

BASES ELECTRIQUES

MODULE 1

Nom :	PRENOM:
LIEU DE FORMATION:	DATE :

SOMMAIRE

1 L	ECTURE SCHEMAS ELECTRIQUES	5
1.1	DECOUPAGE DE LA FONCTION EN TROIS SCHEMAS	5
1.2	CODIFICATION DES FONCTIONS	
1.3	CODIFICATION D'UN ELEMENT	5
1.4	Code couleur	6
1.5	SCHEMA DE PRINCIPE	6
1.6	SCHEMA DE CABLAGE	7
1.7	SCHEMA D'IMPLANTATION	8
1.8	Exercice	9
2 G	RANDEURS PHYSIQUES ELECTRIQUES	12
2.1	LA TENSION OU DIFFERENCE DE POTENTIEL	12
2.2	La resistance	13
2.3	L'intensite	14
2.4	SYNTHESE ET RELATIONS FONDAMENTALES	14
2.5	LOI DES NŒUDS	15
2.6	LOI DES MAILLES	15
3 C	ABLAGE D'UN CIRCUIT	16
3.1	CIRCUIT PARALLELE	16
3.2	CIRCUIT SERIE	16
3.3	Exercices	17
3.4	MESURES ELECTRIQUES SUR SCHEMA	18
4 L	E MULTIMETRE	19
4.1	DESCRIPTION	19
4.2	RAISON D'ETRE D'UN MULTIMETRE	20
4.3	MESURE DE TENSION (DIFFERENCE DE POTENTIEL)	20
4.4	MESURE DE RESISTANCE	21
4.5	MESURE D'INTENSITE	22
4.6	Conclusion	23

5	LA	A BATTERIE	24
	5.1	RAISON D'ETRE DE LA BATTERIE	24
	5.2	Caracteristiques	24
	5.3	La capacite	24
	5.4	COUPLAGE DE BATTERIES	25
	5.5	FORCE ELECTROMOTRICE E (F.E.M.)	25
	5.6	DESCRIPTION DU CONTROLEUR BOSCH	26
	5.7	Branchement du controleur	26
6	LE	E CIRCUIT DE DEMARRAGE	27
	6.1	DESCRIPTION	27
	6.2	Courbes caracterisitiques	27
	6.3	SCHEMATISATION	28
	6.4	LOI DES MAILLES	28
7	PR	RINCIPES ELECTRIQUES	29
	7.1	Electro-magnetisme	29
	7.2	Principe de l'effet Hall	30
	7.3	LES TRANSDUCTEURS PIEZO-ELECTRIQUES	31
	7.4	LE PILOTAGE TOR	32
	7.5	LE PILOTAGE RCO	32
8	LE	E RELAIS	33
	8.1	RAISON D'ETRE DU RELAIS	33
	8.2	DESCRIPTION	
	8.3	SCHEMATISATION	
	8.4	FONCTIONNEMENT	34
	8.5	L'AUTO-INDUCTION	35
	8.6	PROTECTION DES CIRCUITS INDUCTIFS	
	8.7	NORME DES RELAIS	36
	8.8	CONTROLE D'UN RELAIS	36
	8.9	Le relais double	37
9	CO	OMPOSANTS ELECTRONIQUES	38
	9.1	LA DIODE	
	9.2	La diode de Zener	38
	9.3	LE TRANSISTOR NPN	39
	9.4	LE TRANSISTOR PNP	39

10	GESTION REFROIDISSEMENT MOTEUR	40
10.1	PRINCIPE DE FONCTIONNEMENT	40
10.2	SCHEMA ELECTRIQUE	41
10.3	Analyse du fonctionnement	42
10.4	Analyse d'un dysfonctionnement	43
10.5	SYNOPTIQUE DE LA FONCTION REFROIDISSEMENT	44
10.6	FONCTIONNEMENT	46
10.7	SEUIL D'ENCLENCHEMENT	47
10.8	PILOTAGE RCO	48
11 l	LES CONTROLES ELECTRIQUES	49
11.1	CONTROLE DE CONTINUITE	49
11.2	CONTROLE D'ISOLEMENT PAR RAPPORT A LA MASSE	49
11.3	CONTROLE D'ISOLEMENT PAR RAPPORT AU PLUS	49
11.4	CONTROLE D'ISOLEMENT DE DEUX FILS	50
11.5	CONTROLE D'UN ELEMENT RESISTIF	50
11.6	CONTROLE D'UN ACTIONNEUR	51
11.7	LE CONTROLE D'ALIMENTATION	52
11.8	EXEMPLES DE MAUVAIS CONTROLES D'ALIMENTATION	53
12 l	LECTURE SCHEMA & DIAGNOSTIC	54
12.1	Preambule	54
12.2	IDENTIFICATION	54
12.3	FONCTIONNEMENT	55
12.4	Controles	55
12.5	DIAGNOSTIC	56
12.6	POSITION REPOS	57
12.7	COMMANDE VITRE DROITE PAR INTERRUPTEUR PASSAGER	58
12.8	COMMANDE VITRE DROITE PAR INTERRUPTEUR CONDUCTEUR.	59
12.9	DECODAGE ANCIEN SCHEMA ELECTRIQUE	60
12.10	IDENTIFICATION DES FAISCEAUX	60
12.11	DESIGNATION DES ELEMENTS	61
12.12	SYMBOLES ELECTRIQUES	62

1 LECTURE SCHEMAS ELECTRIQUES

1.1 DECOUPAGE DE LA FONCTION EN TROIS SCHEMAS

- Un schéma de principe
- Un schéma de câblage
- Un schéma d'implantation

1.2 CODIFICATION DES FONCTIONS

Groupe 1: MOTO PROPULSEUR:

10 Démarrage, génération de courant

11 Allumage, préchauffage

12 – 13 Alimentation carburant, alimentation injection

14 Diagnostic moteur etc.

Systèmes du groupe

Groupe 2: SIGNALISATION; ECLAIRAGE EXTERIEUR

Groupe 3: ECLAIRAGE INTERIEUR

Groupe 4: INFORMATION CONDUCTEUR

Groupe 5 : LAVAGE ; ESSUYAGE

Groupe 6: ASSISTANCE MECANISME DIVERS

Groupe 7: AIDE A LA CONDUITE

Groupe 8 : CONFORT A LA CONDUITE

80 Climatisation, réfrigération

8020 compresseur de réfrigération 8048 relais pulseur etc.

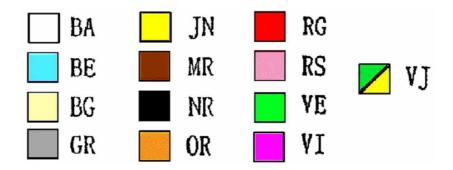
Eléments du système

Groupe 9 : MULTIPLEXAGE

1.3 CODIFICATION D'UN ELEMENT

Numéro du groupe (4 : information conducteur)

4 3 10


Numéro de l'élément : jauge à carburant récepteur

Numéro du système (43 : information carburant et préchauffage)

BASES ELECTRIQUES - 5 -

1.4 CODE COULEUR

1.5 SCHEMA DE PRINCIPE

A: représentation Prise de masse.

B numéro de l'appareil.

C: numéro de fil.

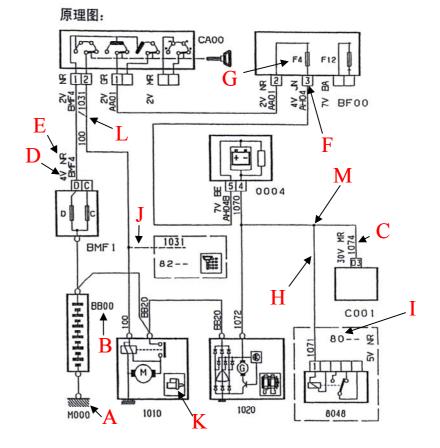
D: nombre de case du connecteur.

E: couleur du connecteur.

F: numéro de case du connecteur.

G: numéro de fusible.

H : représentation d'information allant vers une autre fonction.


I numéro de la fonction concernée par le report.

J . représentation fil existant suivant équipement du véhicule.

K: figurine représentative. de l'appareil.

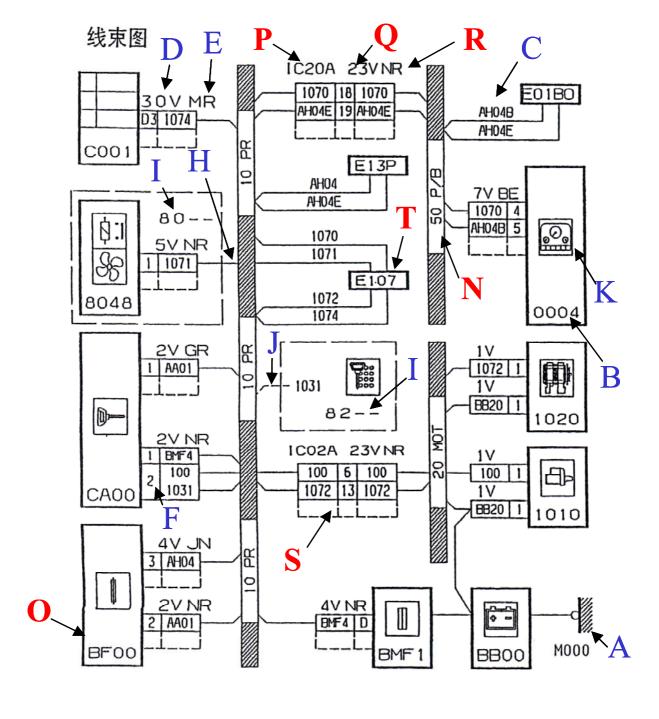
L: fils en mariage.

M : représentation d'une épissure.

1.6 SCHEMA DE CABLAGE

N: identification du faisceau.

0 : représentation d'une boîte à fusibles.


P: numéro de l'interconnexion.

Q : nombre de voies de l'interconnexion.

R : couleur de l'interconnexion.

S: représentation d'une interconnexion partielle.

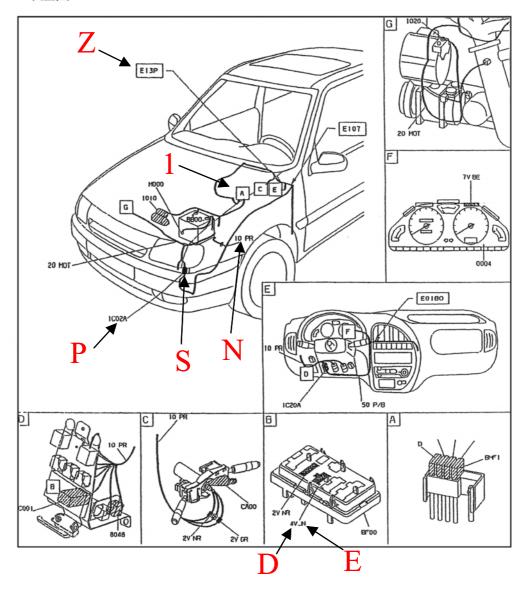
T: représentation d'une épissure

1.7 SCHEMA D'IMPLANTATION

D : nombre de voies du connecteur.

E: couleur du connecteur.

N: identification du faisceau.

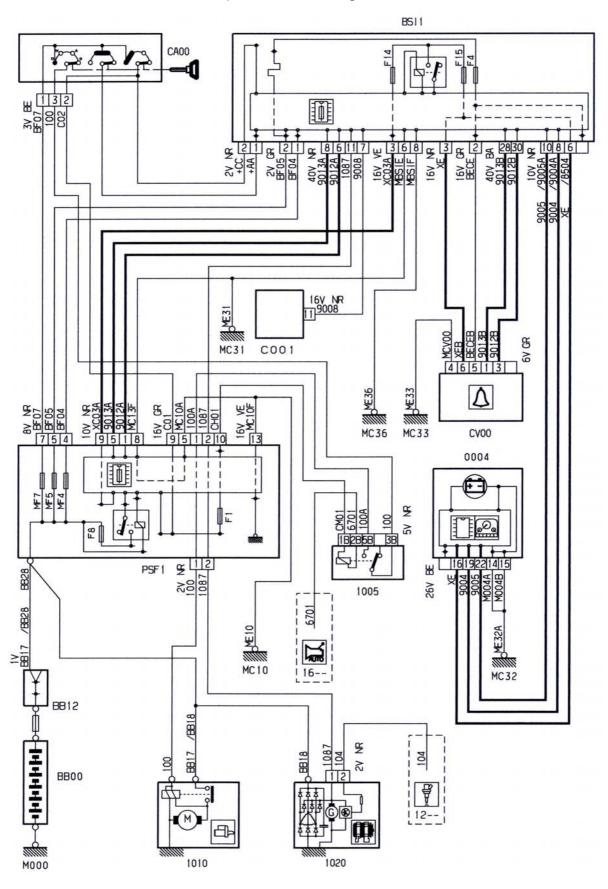

P: numéro de l'interconnexion.

S: représentation d'une interconnexion partielle.

Z : représentation d'une épissure.

1: voir détail dans le cadre indiqué

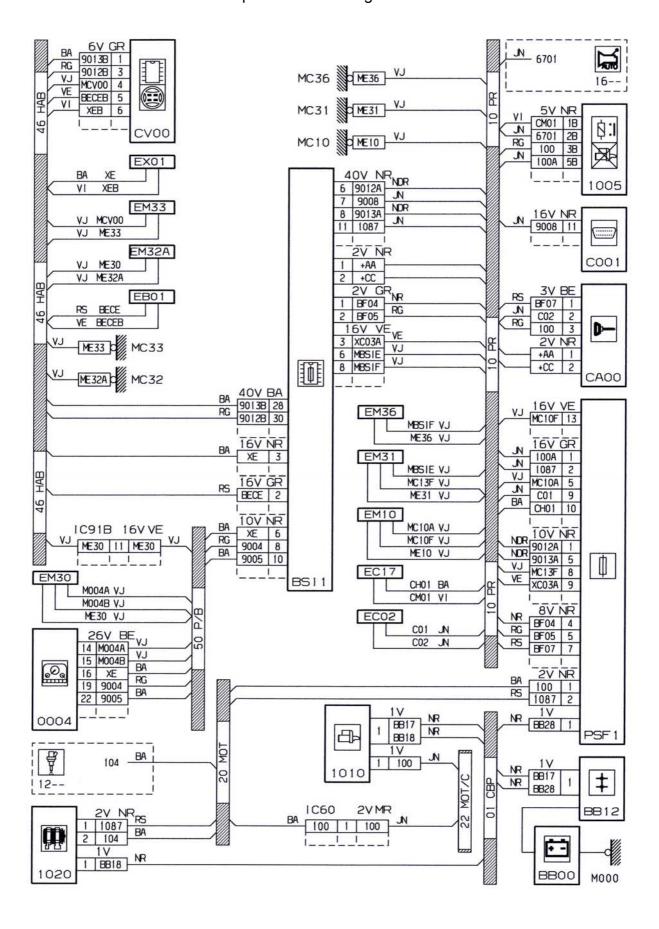
布置图



BASES ELECTRIQUES

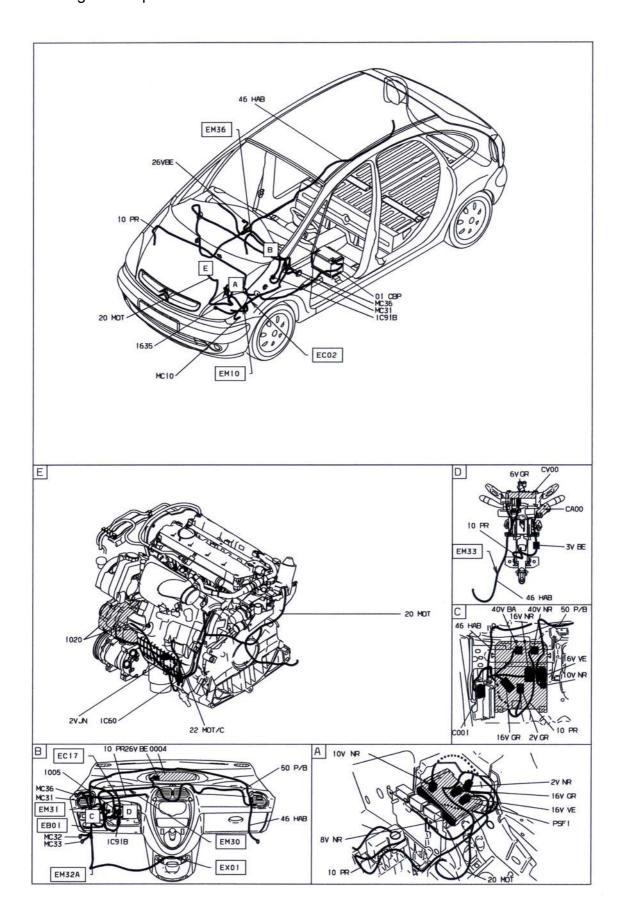
1.8 EXERCICE

Repérez sur le schéma de principe ci-dessous, le circuit de commande du démarreur en bleu et le circuit de puissance en rouge.



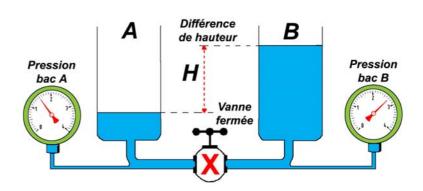
BASES ELECTRIQUES - 9 -

- 10 -

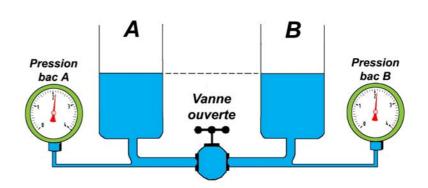

Repérez sur le schéma de câblage ci-dessous, le circuit de commande du démarreur en bleu et le circuit de puissance en rouge.

Bases electriques

Repérez sur le schéma d'implantation ci-dessous, les différents faisceaux du circuit de démarrage ainsi que les interconnexions.



2 GRANDEURS PHYSIQUES ELECTRIQUES


2.1 LA TENSION OU DIFFERENCE DE POTENTIEL

ANALOGIE HYDRAULIQUE

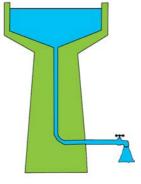
La vanne est fermée et le niveau d'eau dans le bac B est plus important que celui du bac A. La différence de hauteur **H** correspond à une énergie potentielle.

La vanne est ouverte les niveaux des bacs se sont équilibrés, il n'y a plus de différence de hauteur de liquide. La circulation du liquide est nulle, il n'y a plus d'énergie.

De même en électricité, pour qu'un courant circule dans un circuit, il faut une différence de « pression électrique » à ses extrémités.

Symbole de la grandeur physique :
Unité de mesure :
Symbole de l'unité de mesure :

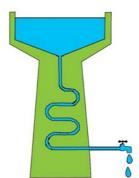
BASES ELECTRIQUES - 12 -



2.2 LA RESISTANCE

LE DEBIT EST IMPORTANT

La section est importante. La longueur est faible. La paroi est lisse.


LA RESISTANCE EST FAIBLE

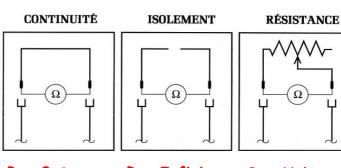
LE DEBIT EST FAIBLE

La section est faible.
La longueur est importante.
La paroi est rugueuse

LA RESISTANCE EST IMPORTANTE

Formule de la résistance

R : résistance en ohm (Ω) ρ : résistivité en Ω .mm²/m L : longueur en mètre


S : surface en mm²

Argent ρ = 0,0164 Ω mm²/m Cuivre ρ = 0,0172 Ω mm²/m Aluminium ρ = 0,0269 Ω mm²/m

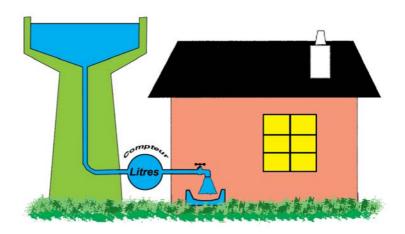
En électricité on appelle RESISTANCE, l'opposition au passage du COURANT ELECTRIQUE.

Symbole de l'unité de mesure :

3 MESURES POSSIBLES

 $R = 0 \Omega$

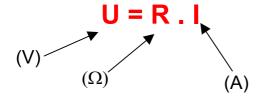
R = Infinie

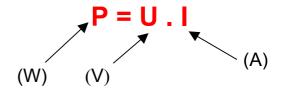

R = Valeur définie

2.3 L'INTENSITE

Par analogie, dans le circuit hydraulique, l' « INTENSITE » c'est le débit d'eau qui circule dans le tuyau.

Important: Il n'y a débit que si il y a consommation de courant. Sans consommateur pas de courant, intensité nulle.


En électricité, on appelle INTENSITE ou DEBIT la quantité de courant qui passe dans le circuit.


Symbole de la grandeur physique :
Unité de mesure :
Symbole de l'unité de mesure :

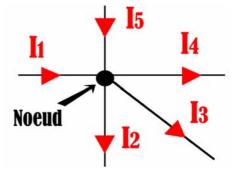
2.4 SYNTHESE ET RELATIONS FONDAMENTALES

Grandeurs physiques	Symbole de la grandeur physique	Unité de mesure	Symbole de l'unité de mesure
La tension			
La résistance			
L'intensité			
La puissance			

Loi d'ohm

2.5 LOI DES NŒUDS

Définition d'un nœud : Un nœud est une intersection de plusieurs fils.


Loi des nœuds :

La somme des intensités des courants qui arrivent à un nœud est égal à la somme des intensités des courants qui en repartent.

Sur le schéma ci-contre :

- I₁ et I₅ sont les intensités qui arrivent au nœud.
- I₂, I₃ et I₄ sont les intensités qui repartent du nœud.

Donc d'après la loi des nœuds, $I_1 + I_5 = I_2 + I_3 + I_4$

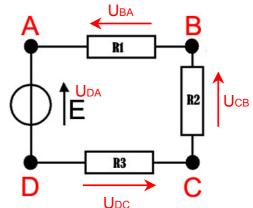
2.6 LOI DES MAILLES

Définition d'une maille : Une maille est un chemin fermé passant par différents points électrique d'un circuit.

Loi des mailles :

La somme algébrique des tensions rencontrées dans une maille est nulle.

Sur le schéma ci-contre :


A, B, C, D est une maille.

Tracer les flèches de tension. Une flèche de tension se trace toujours du moins vers le plus.

- $U_{AB} + U_{BC} + U_{CD} + U_{DA} = 0$
- UDA = UBA + UCB + UDC

$$U_{BA} = R_1 \times I$$
 $U_{CB} = R_2 \times I$ $U_{DC} = R_3 \times I$

- $U_{DA} = R_{1x} I + R_{2x} I + R_{3x} I$
- $U_{DA} = I_{x} (R_1 + R_2 + R_3)$

3 CABLAGE D'UN CIRCUIT

3.1 CIRCUIT PARALLELE

LA TENSION:		
L'INTENSITE :	+	
RESISTANCE EQUIVALENTE :		L3
3.2 CIRCUIT SERIE LA TENSION:	<u>1</u> =	
L'INTENSITE :	+	L1
RESISTANCE EQUIVALENTE :		L2
	Req =	23

3.3 EXERCICES

3.3.1 Pont diviseur de tension

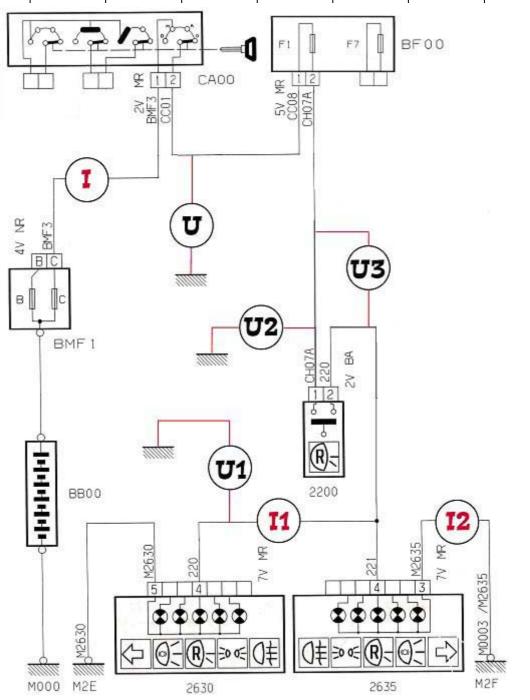
	\perp	
\bigwedge	R1	
	A.	
U	\Box	\mathbf{k}
	R2	U _{AM}
	М	

Exprimez UAM en fonction de U, R1 et R2 :	

3.3.2 Association de résistances

R3 = 20
$$\Omega$$
 U3 = ?

R1 R2
R3



3.4 MESURES ELECTRIQUES SUR SCHEMA

Compléter le tableau suivant sachant que le contacteur allumage/démarrage CA00 est en position contact (M). Sachant qu'une lampe de feu de recul a une puissance de 21w (tension batterie 12V).

Contact 2200	U	U1	U2	U3	I	I1	12
0 (ouvert)							
1 (fermé)							

BASES ELECTRIQUES - 18 -

- 19 -

4 LE MULTIMETRE

4.1 DESCRIPTION

Rappel:

p = pico =
$$10^{-12}$$
 = un millionième de millionièmek = kilo = 10^3 = mille

n = nano =
$$10^{-9}$$
 = un milliardième M = mega = 10^6 = un million

$$\mu$$
 = micro = 10^{-6} = un millionième G = giga = 10^{9} = un milliard

$$m = milli = 10^{-3} = un millième$$

Compléter les égalités suivantes :

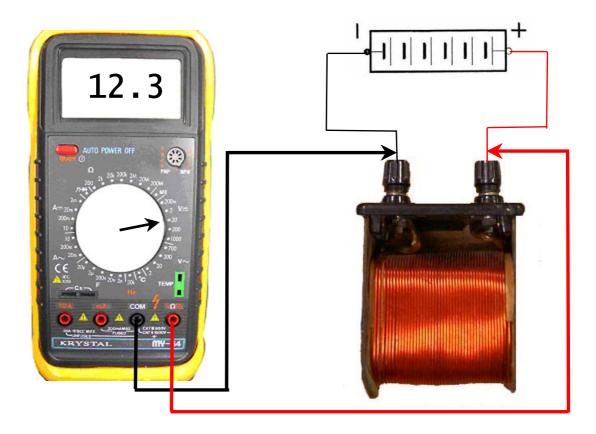
$$0.230 \text{k}\Omega = \dots \dots \Omega \qquad 0.0025 \text{ M}\Omega = \dots \dots \dots \Omega \qquad 0.0025 \text{ M}\Omega = \dots \dots \text{k}\Omega$$

$$56251 \Omega = kΩ36.2 MΩ = kΩ6892kΩ = MΩ$$

BASES ELECTRIQUES

4.2 RAISON D'ETRE D'UN MULTIMETRE

Un multimètre permet de mesurer les différentes grandeurs physiques électriques telles que :


LA TENSIONL'INTENSITELA RESISTANCE

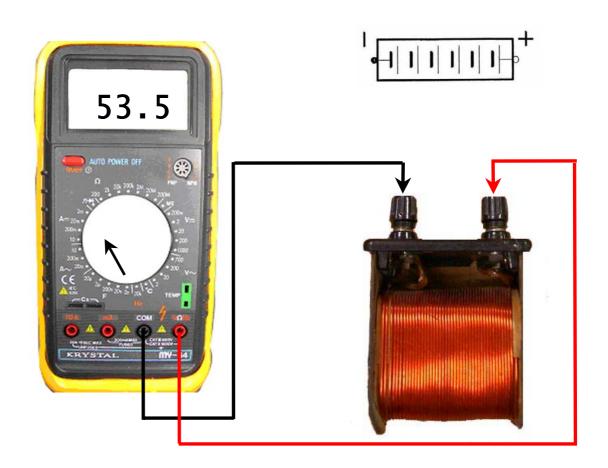
Un multimètre se compose de plusieurs appareils de mesure :

UN VOLTMETREUN AMPEREMETREUN OHMMETRE

4.3 MESURE DE TENSION (DIFFERENCE DE POTENTIEL)

La tension se mesure aux bornes d'un générateur ou d'un consommateur.

UN VOLTMETRE SE BRANCHE TOUJOURS EN PARALLELE


BASES ELECTRIQUES - 20 -

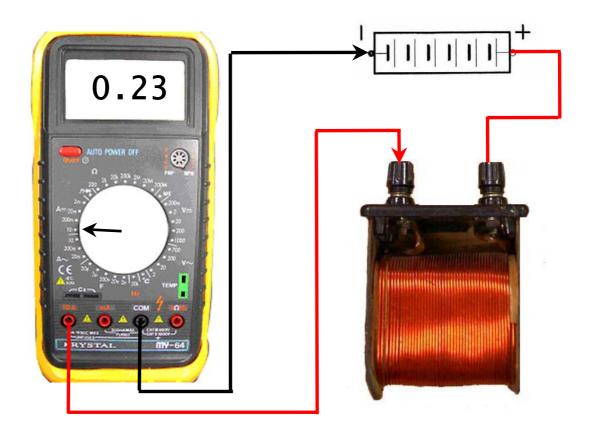
4.4 MESURE DE RESISTANCE

Un ohmmètre peut effectuer trois mesures différentes :

\bigcirc	
$ \sim $	
\sim	

UN OHMMETRE SE BRANCHE TOUJOURS AUX BORNES D'UN CONSOMMATEUR OU D'UN CONDUCTEUR.

LE CIRCUIT DOIT TOUJOURS ETRE OUVERT.


NE JAMAIS BRANCHER UN OHMMETRE SUR UN GENERATEUR DE COURANT ELECTRIQUE.

BASES ELECTRIQUES - 21 -

4.5 MESURE D'INTENSITE

Un ampèremètre mesure la « quantité d'électricité » qui passe dans le circuit.

UN AMPEREMETRE SE BRANCHE TOUJOURS EN SERIE

BASES ELECTRIQUES - 22 -

4.6 CONCLUSION

En conclusion, avant de brancher un multimètre, mettre le circuit hors tension (circuit ouvert) posez-vous les questions suivantes :

- 1) Quelle mesure voulez-vous effectuer? Tension, Résistance, Intensité.
- 2) L'alimentation de votre circuit est en courant continu ou alternatif?
- 3) Quel l'ordre de grandeur de votre mesure ? 12 volts ou 220 volts, 5 ampères ou 5 mA, 10Ω ou $10~\text{K}\Omega$?
- Si vous ne savez pas prenez la valeur la plus élevée puis réajuster.

POSITIONNER LE CALIBRE DE VOTRE MULTIMETRE

4) Comment allez-vous brancher votre multimètre ? Voltmètre en parallèle, Ohmmètre circuit ouvert, Ampèremètre en série.

VERIFIER CES QUATRE POINTS ET ALIMENTER VOTRE CIRCUIT SI NECESSAIRE

BASES ELECTRIQUES - 23 -

5 LA BATTERIE

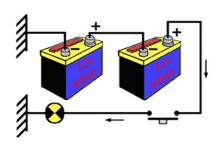
5.1 RAISON D'ETRE DE LA BATTERIE

Moteur arrêté :	Moteur tournant :
Fournir l'énergie nécessaire pour alimenter :	Lorsque le moteur tourne, l'alternateur débite afin d'alimenter tous les consommateurs électriques.
L'allumage (essence) L'injection Le préchauffage (diesel) Le démarreur Les accessoires (lampes, autoradio, etc.)	La batterie est maintenue en état de charge maximale. Elle stocke l'énergie électrique.
5.2 CARACTERISTIQUES	
40.14	
12 V	200 A 40 Ah
	→
5.3 La CAPACITE	
La capacité (Q) définit la quantité d'éle un temps donné.	ectricité que peut fournir un batterie pendant
$Q = I \times t$	
(capacité en Ah) (intensité en A	(temps en h)

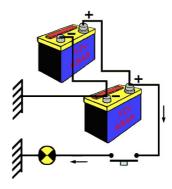
Exemple : Quelle intensité peut fournir une batterie de 60 Ah,

Pendant 10 h:

Pendant 15 h:


Pendant 1 h:

Pendant 6 h:


5.4 COUPLAGE DE BATTERIES

SERIE

Tension:	 		 			•			
Capacité	 								

PARALLELE

rension:	
Capacité ·	

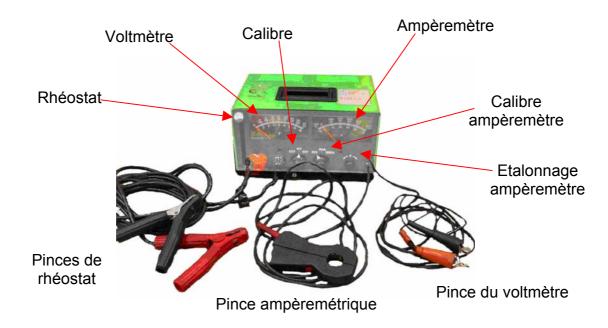
5.5 FORCE ELECTROMOTRICE E (F.E.M.)

La force électromotrice **(f.e.m.)** se mesure aux bornes de la batterie à circuit ouvert (tension à vide)

- ✓ U : différence de potentiel DDP aux bornes de la batterie (Volts)
- ✓ **E**: Force Electro Motrice (FEM en volts) tension aux bornes du générateur lorsqu'il ne débite aucun courant (I=0).
- ✓ **r** : résistance interne de la batterie (en Ohms).
- ✓ I : débit de la batterie en A.

La résistance interne correspond à la somme de la résistance électrique des matières solides et de la résistance électrolytique.

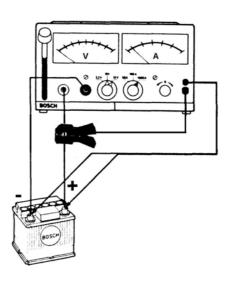
La résistance interne de la batterie d'accumulateur au plomb est très faible. C'est sa grande qualité, car elle permet un débit de courant important en un temps limité (<u>ex</u> : lors du démarrage).


La résistance interne d'une batterie dépend :

- de sa capacité, plus le nombre et la surface des plaques augmente, plus la surface d'échange augmente => plus la résistance interne diminue)
- **de l'état de charge** (lors de la décharge, du sulfate de plomb se forme sur les plaques => la résistance interne *augmente*).
- de la température (la baisse de la température augmente la viscosité de l'électrolyte => la résistance interne augmente).

BASES ELECTRIQUES - 25 -

5.6 DESCRIPTION DU CONTROLEUR BOSCH


5.7 Branchement du controleur

5.7.1 Contrôle d'une batterie

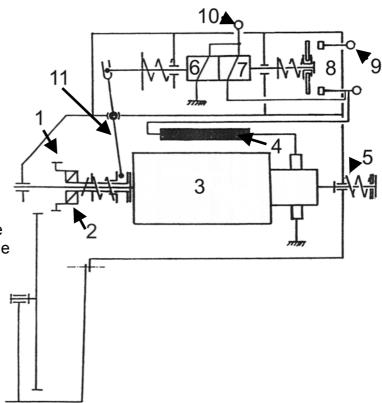
- S'assurer que le rhéostat est au repos : levier en haut
- Etalonner votre ampèremètre sur le zéro.
- **3** D'après le schéma ci-contre, branchez votre contrôleur sur la batterie.
- Basculez le levier du rhéostat vers le bas (maximum 3 sec) afin d'augmenter le débit. Faites débiter la batterie de trois fois sa capacité.

Exemple : pour une batterie de 65 Ah, vous devez faire débiter celle ci de 195 ampères.

• Lorsque vous avez atteint l'intensité désirée, relevez la tension aux bornes de la batterie à l'aide du voltmètre.

6 Diagnostic

La tension est supérieure à 9,6 volts :	
La tension est inférieure à 9,6 volts :	


BASES ELECTRIQUES - 26 -

6 LE CIRCUIT DE DEMARRAGE

6.1 DESCRIPTION

- 1: Pignon
- 2: Roue libre
- 3: Induit
- 4: Inducteur
- 5: Frein
- 6: Bobinage de maintien
- 7: Bobinage d'appel
- 8: Contacteur de puissance
- 9: Alimentation circuit de puissance
- 10 : Alimentation circuit de commande
- 11: Fourchette

6.2 Courbes caracterisitiques

Pour une puissance de 1.2 kW:

Tension :

Intensité :

Couple :

Régime :

Rendement global:

Puissance absorbée :

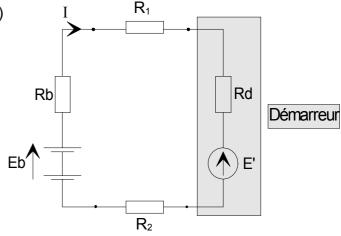
Puissance utile :

Rendement global:.....

1,5-		20
7000-1,4-		19 18
1,313		17
6 000 - 1,2- 12		16
1,1-11	1 105kW / 11	15
5000 -1,0-10		3
0,9- 9		12
4000 -0,8- 8	-NET	11
0,7- 7	710 7	9
3000-0,6-6		8
0,5 5		7 6
2000 - 0,4-		
0,3		5
1000 -0,2-		3
- 1,0		1
ه له له	Amo	0
£ _	60 200 200 3325 400 400 500	
Ntr/mn P kW	N E D	
z a	, s	

6.3 SCHEMATISATION

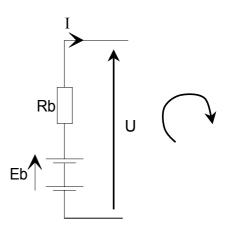
 R_1 et R_2 = résistance de ligne (fils d'alimentation) (Valeur en Ohms, normalement négligeable)

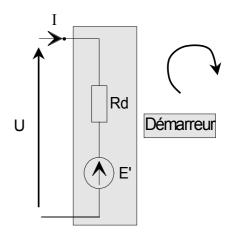

Eb = tension à vide de la batterie, f.e.m (Volts)

E' = force contre électromotrice (Volts)

Rb = résistance interne de la batterie (Ohms)

Rd = résistance interne du démarreur (Ohms)

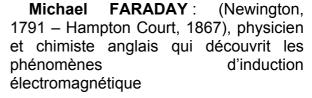

I = Intensité

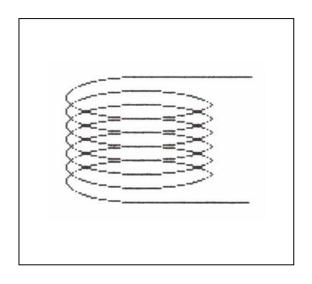

6.4 LOI DES MAILLES

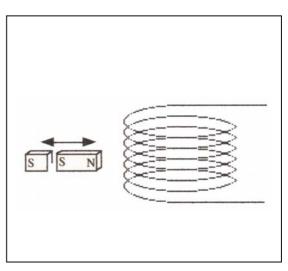
Ecrivez la loi des mailles concernant les schémas suivants :

.....

.....

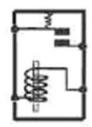


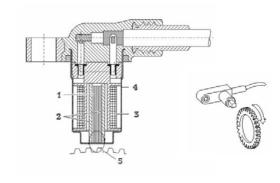

7 PRINCIPES ELECTRIQUES


7.1 ELECTRO-MAGNETISME

7.1.1 Lois de Faraday et Oersted

Christian OERSTED: (Rudkobing, 1777 – Copenhague, 1851) physicien danois qui découvrit l'existence du champ magnétique créé par un courant électrique.

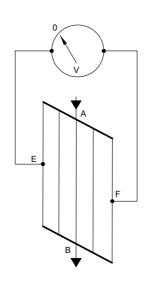


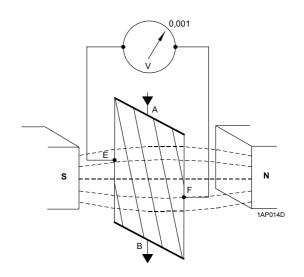


CREATION D'UN CHAMP MAGNETIQUE	CREATION D'UN COURANT INDUIT

Exemple d'un relais :

Exemple d'un capteur de roue :

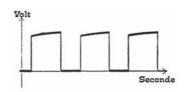


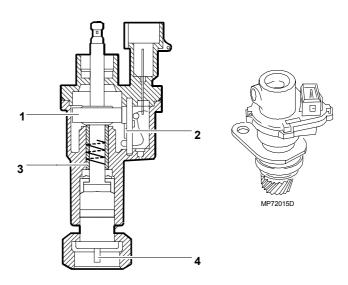


7.2 PRINCIPE DE L'EFFET HALL

L'élément essentiel de ce système est une plaquette d'épaisseur infime de 1,2 mm de côté.

Cette plaquette est parcourue par un courant entre ses points A et B. En l'absence de tout champ magnétique, on ne recueille aucune

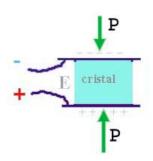

tension entre les points équidistants E et F.

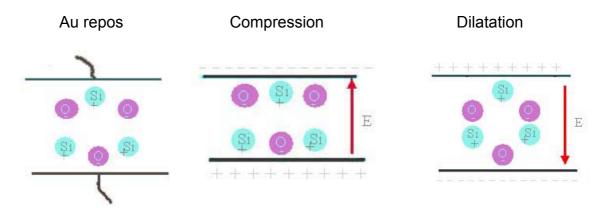

Lorsque l'on applique un champ magnétique S - N perpendiculairement à la plaquette, on recueille une tension de Hall très faible 0,001 volt entre les points E et F. (Celle-ci provient de la déviation des lignes de courant A.B par le champ magnétique, dans la mesure où les deux conditions simultanées de courant électrique et champ magnétique sont réalisées).

Exemple d'un capteur de vitesse véhicule

Le capteur doit fournir un signal électrique proportionnel à la vitesse de rotation du secondaire BV, donc à la vitesse du véhicule. Il permet au calculateur de savoir en position pied levé si le véhicule est roulant ou non et également de connaître le rapport de BV pour certaines fonctions.

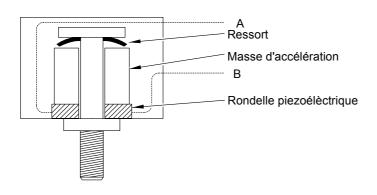
- 1 Roue polaire
- 2 Capteur Hall
- 3 Palier
- 4 Entraînement

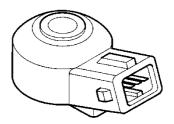



7.3 LES TRANSDUCTEURS PIEZO-ELECTRIQUES

Un transducteur transforme un signal électrique en un signal mécanique et inversement.

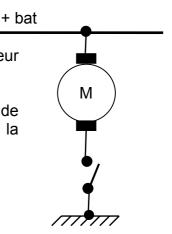
La piezo-électricité est la propriété de certains cristaux de générer de l'électricité sous l'effet d'une pression et inversement.




7.3.1 Exemple du cristal de quartz (silice) piezo- électricité naturelle

Apparition d'un potentiel électrique sur certaines faces d'un cristal lorsque celui-ci est soumis à une pression mécanique. En revanche, le cristal subit une distorsion mécanique lorsqu'un champ électrique est appliqué sur certaines de ses faces. L'effet piézo-électrique fut découvert en 1880 sur le quartz et le sel de Rochelle, par Pierre Curie et son frère Jacques, qui lui donnèrent le nom de piezo-électricité (du grec *piezein*, «presser »).

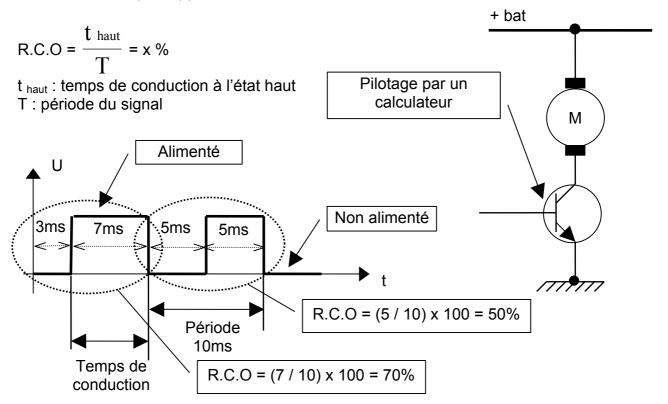
Exemple d'un capteur de cliquetis :


BASES ELECTRIQUES - 31 -

7.4 LE PILOTAGE TOR

T.O.R (Tout Ou Rien), ce pilotage est binaire l'actionneur fonctionne ou ne fonctionne pas.

L'électrovanne est ouverte ou fermé, mais pas de possibilité de modulé son ouverture ou de faire varier la vitesse du moteur électrique.



7.5 LE PILOTAGE RCO

Le passage du courant dans une électrovanne ou un moteur électrique doit dans certains cas être modulé.

En modulant le passage du courant à la masse, il est possible de faire tourner + ou - un moteur électrique ou, d'ouvrir + ou - une électrovanne.

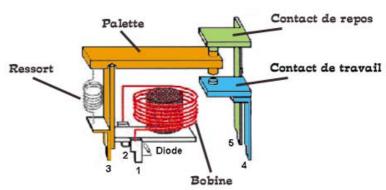
Le principe est nommé R.C.O (Rapport Cyclique d'Ouverture) exprimé en % de conductibilité par rapport à la masse.

Nota : Une électrovanne peut être « **normalement ouverte** » c'est à dire ouverte au repos ou « **normalement fermée** » c'est à dire fermée au repos.

BASES ELECTRIQUES - 32 -

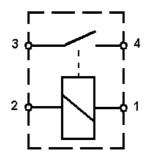
8 LE RELAIS

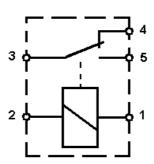
8.1 Raison d'etre du relais


L'alimentation des récepteurs ne passe pas par les organes de commande ce qui permet de :

- Réduire les chutes de tension dans les fils électriques souvent très longs (cas des circuits avec la commande passant par le tableau de bord).
- Réduire le coût des fils de gros diamètre
- Automatiser le fonctionnement de certains circuits (projecteurs de complément, ventilateurs de circuit de refroidissement, etc.)

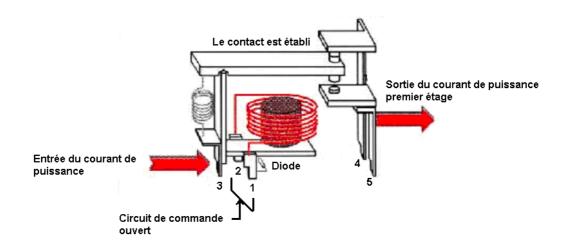
Rappel:


La chute de tension dépend de la résistance du fil (donc de sa section et de sa longueur) et de l'intensité qui circule : U=R.I.


8.2 DESCRIPTION

8.3 SCHEMATISATION

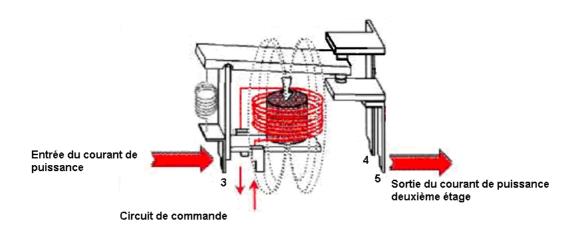
Relais à un étageRelais à deux étages


BASES ELECTRIQUES - 33 -

8.4 FONCTIONNEMENT

8.4.1 Etat repos

Le circuit de commande n'est pas alimenté, aucun courant de puissance ne circule entre les bornes 3 et 5. Mais un courant de puissance peut circuler entre les bornes 3 et 4.



8.4.2 Etat commandé

Un courant de commande alimente la bobine (bornes 1 et 2) qui génère un champ d'attraction électromagnétique provocant la fermeture de l'interrupteur.

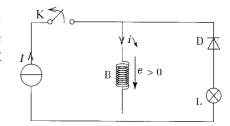
Le courant de puissance circule entre les bornes 3 et 5 vers le consommateur.

Le courant de puissance est coupé entre les bornes 3 et 4.

NB : la résistance du bobinage se situe entre 50 et 100Ω .

BASES ELECTRIQUES - 34 -

8.5 L'AUTO-INDUCTION

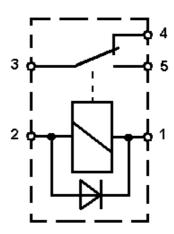

Une force électromotrice induite apparaît dans un circuit dès qu 'il est soumis à un flux variable. Lorsqu'un générateur impose la circulation d'un courant variable dans une bobine, celle-ci se trouvant dans le flux variable qu'elle produit, une fém est induite.

Ce phénomène s'appelle l'auto-induction.

8.5.1 Suppression du courant dans un circuit inductif

Avec un montage nous observons le comportement d'une bobine lorsque l'intensité i du courant varie rapidement de **1** à **0**.

L'interrupteur K étant préalablement fermé, un courant continu d'intensité I circule dans la bobine B la diode D est bloquée et l'intensité du courant dans l'ampoule est nulle.

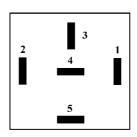


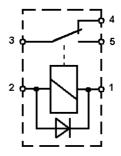
A l'ouverture de K, nous observons que l'ampoule L s'allume brièvement.

8.6 Protection des circuits inductifs

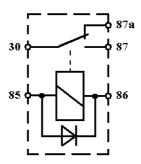
8.6.1 La diode de protection du relais

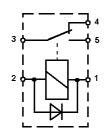
Un circuit inductif ne doit pas être mis en situation de rupture brutale de courant. C'est la raison pour laquelle une diode de protection (diode de roue libre) est montée en parallèle du bobinage pour protéger la commande du relais.

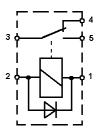

Ces relais sont polarisés


BASES ELECTRIQUES - 35 -

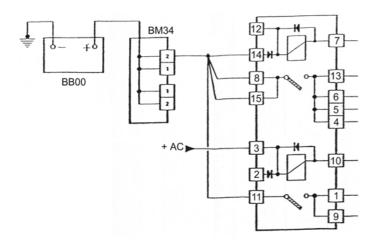
8.7 NORME DES RELAIS


8.7.1 Norme CEI : relais Valéo ou Cartier




8.7.2 Norme DIN: relais Bosch ou Hella

8.8 CONTROLE D'UN RELAIS


Mesures	Bornes 1 et 2	Bornes 1 et 2	Appareil de
Mesures	non alimentées	alimentées	mesure
R ₁₂			
R ₂₁			
R ₃₄			
R ₃₅			

BASES ELECTRIQUES

8.9 LE RELAIS DOUBLE

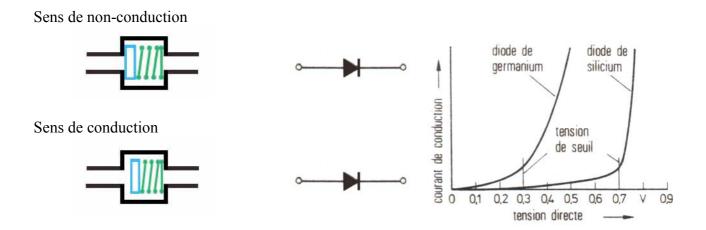
8.9.1 Description

8.9.2 Contrôles Circuit de commande

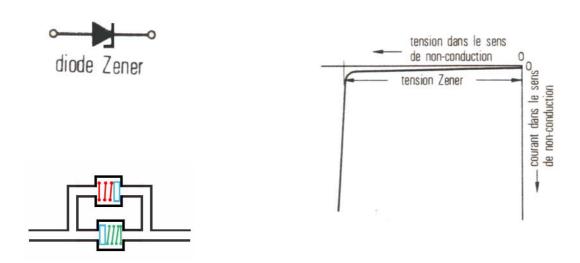
CONTRÔLE DU RELAIS DOUBLE				
CONTRÔLES	Bornes	Valeurs		
Bobine	R 7.12			
Bobine	R 12.7			
Diode de protection	R 7.14			
Diode de protection	R 14.7			
Diode de protection	R 12.14			
Diode de protection	R 14.12			

Circuit de puissance

CONTRÔLE DU RELAIS DOUBLE				
CONTRÔLES	Relais non alimenté	Relais alimenté		
R 8.13				
R 15.13				
R 8.15				


BASES ELECTRIQUES - 37 -

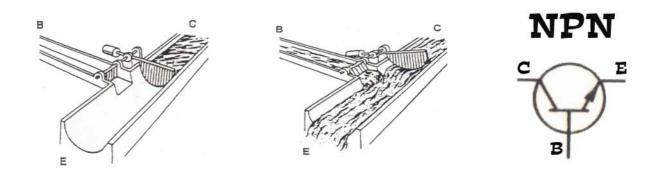
9 COMPOSANTS ELECTRONIQUES


9.1 LA DIODE

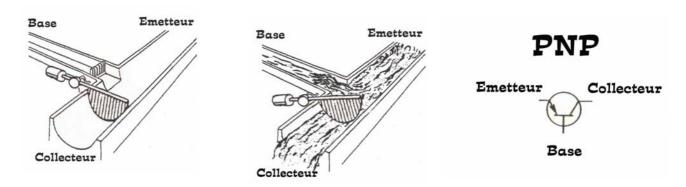
La diode est un composant électronique qui a la particularité de bloquer le courant dans un sens, comme un clapet hydraulique.

9.2 LA DIODE DE ZENER

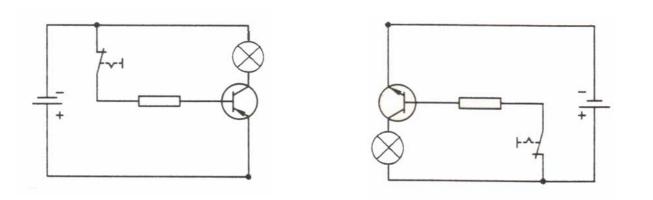
C'est une diode qui fonctionne comme une diode classique dans le sens passant et qui laisse passer le courant dans le sens inverse à partir d'une certaine valeur plus importante : Exemple 4,5 volts.



BASES ELECTRIQUES - 38 -


9.3 LE TRANSISTOR NPN

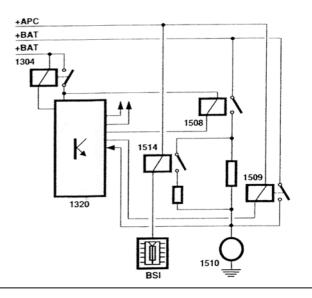
Le débit d'un fluide est bloqué par une vanne en C, si un débit plus faible vient commander la vanne par un circuit B en dérivation, le débit peut alors s'effectuer entre C et E.

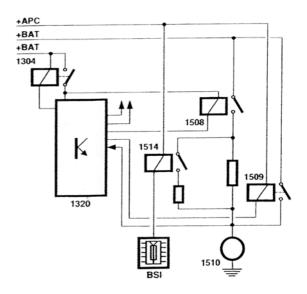


9.4 LE TRANSISTOR PNP

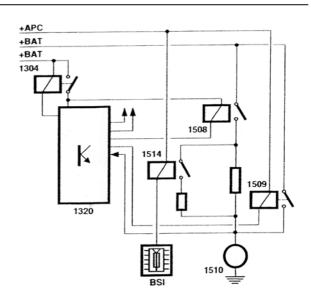
Un débit peut s'effectuer entre *Emetteur* et *Collecteur* si un débit plus faible vient commander la vanne entre *Emetteur* et *Base*

Exemple de schémas :

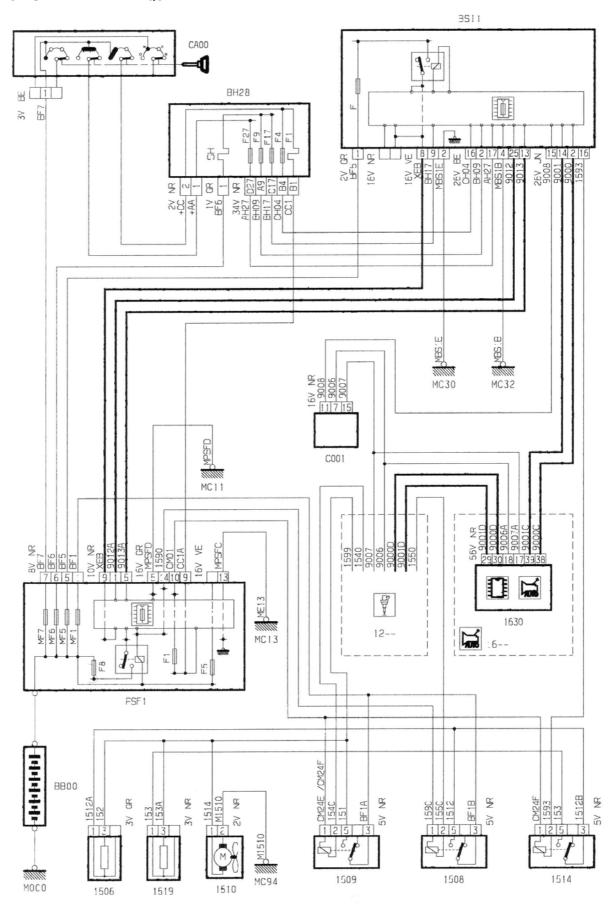

BASES ELECTRIQUES - 39 -


10 GESTION REFROIDISSEMENT MOTEUR

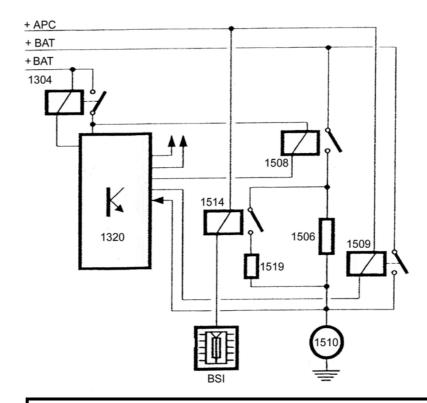
10.1PRINCIPE DE FONCTIONNEMENT


Première vitesse

Deuxième vitesse


Troisième vitesse

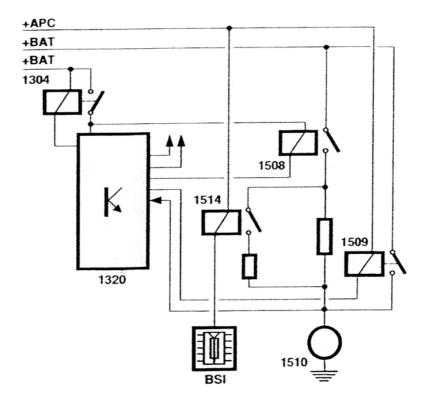
BASES ELECTRIQUES


10.2SCHEMA ELECTRIQUE

10.3ANALYSE DU FONCTIONNEMENT

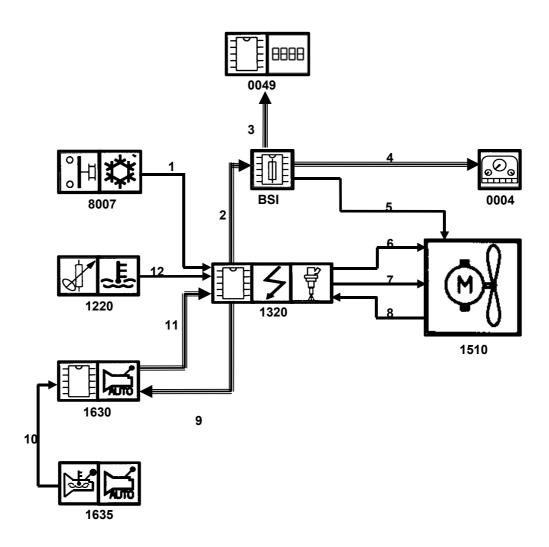
D'après le synoptique suivant, compléter le tableau ci-dessous en cochant les éléments concernés par les différentes vitesses.

	1510				
Eléments	PV ou première vitesse (1)	MV ou moyenne vitesse (2)	GV ou grande vitesse (3)		
1320					
1506					
1508					
1509					
1514					
1519					
BSI					


BASES ELECTRIQUES - 42 -

10.4ANALYSE D'UN DYSFONCTIONNEMENT

En fonction des symptôme du tableau et du schéma de fonctionnement ci-dessous, déterminer le ou les relais hors service.


	1510				
Enclenchement des vitesses 1320 Relais hors service 1 ^{er} ou PV		1320 et BSI 2 ^{ème} ou MV	1320 3 ^{ème} ou GV		
	0	0	0		
	PV	PV	GV		
	0	0	GV		
	PV	MV	0		
	PV	PV	0		

BASES ELECTRIQUES - 43 -

10.5SYNOPTIQUE DE LA FONCTION REFROIDISSEMENT

Légende :

Flèche simple = liaison filaire,

Flèche triple = liaison multiplexée.

BASES ELECTRIQUES - 44 -

	ORGANES			
BSI	Boîtier de Servitude Intelligent			
0004	Combiné			
0049	Ecran multifonction			
1220	Sonde de température moteur			
1320	Calculateur Moteur			
1510	Groupe Moto Ventilateur			
1630	Calculateur de boîte de vitesses automatique*			
1635	sonde température huile BVA*			
8007	7 Capteur de pression linéaire			

^{*} Selon versions

	LIAISONS			
N° DE LIAISON	SIGNAL	NATURE DU SIGNAL		
1	Pression du circuit de réfrigération	ANALOGIQUE		
2	Information température moteur Information alerte température moteur Information pression du circuit de réfrigération Information Défaut BVA*			
3	Affichage message alerte	VAN CONFORT		
4	Information température moteur Information alerte température moteur Information Défaut BVA*	VAN CONFORT		
5	5 Commande vitesse moyenne du groupe moto ventilateur			
6	Commande petite vitesse du groupe moto ventilateur	TOUT OU RIEN		
7	Commande grande vitesse du groupe moto ventilateur	TOUT OU RIEN		
8	Information de rotation Groupe Moto Ventilateur (diagnostic)	TOUT OU RIEN		
9	Information température moteur	CAN		
10	Information température huile boîte de vitesses automatique*	ANALOGIQUE		
11	Demande refroidissement boîte de vitesses automatique Information Défaut BVA*	CAN		
12	Information température moteur	ANALOGIQUE		

^{*} Selon version.

10.6FONCTIONNEMENT

10.6.1 Préambule

La fonction refroidissement est gérée par le calculateur moteur (F.R.I.C) contrairement aux anciennes architectures, où la fonction était gérée par le boîtier de température moteur.

Cette fonction contrôle le groupe moto ventilateur de refroidissement du moteur pendant et après le fonctionnement du moteur. Cette stratégie s'élabore en fonction :

- ➤ de la température moteur,
- >des besoins issus des fonctions de climatisation,
- ➤ des besoins de la boîte de vitesse automatique (refroidissement de l'huile).

10.6.2Détermination de la vitesse du groupe moto ventilateur

Le calculateur moteur fixe la consigne de vitesse du moto ventilateur en fonction des paramètres suivants :

➤ température moteur mesurée par la sonde, et de tables préprogrammés dans le calculateur moteur,

- ▶ besoin de refroidissement associé à la réfrigération.
- >besoin de refroidissement de la boite de vitesses automatique.

10.6.3Post ventilation

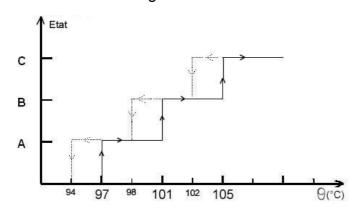
Il est nécessaire de continuer la ventilation lors de la coupure du mode +APC moteur tournant si la température moteur mesurée par la sonde est supérieure à un seuil programmé. Le fonctionnement du Groupe Moto Ventilateur en petite vitesse est alors requis pendant 6 minutes maximum.

10.6.4 Mode dégradé

Une défaillance du groupe Moto Ventilateur (ou défaillance des commandes petite vitesse et grande vitesse) provoque son fonctionnement en grande vitesse.

Une défaillance de la sonde température moteur provoque les actions suivantes :

- >fonctionnement du Groupe Moto Ventilateur en grande vitesse,
- >arrêt du compresseur de réfrigération,
- ▶allumage au combiné du voyant STOP et du voyant d'alerte.
- >affichage d'un message à l'écran Multifonctions
- >enregistrement d'un défaut dans le calculateur moteur.


BASES ELECTRIQUES - 46 -

10.7SEUIL D'ENCLENCHEMENT

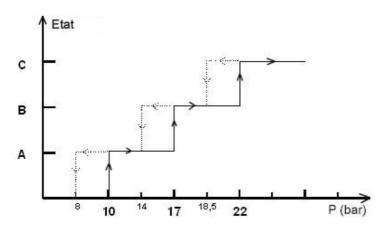
10.7.1 Température moteur

- ✓ Si la température moteur est \geq 97°, le Calculateur Moteur commande le Groupe Moto Ventilateur en petite vitesse.
- ✓ Si la température moteur est \geq 101°, le BSI et le calculateur moteur commande le Groupe Moto Ventilateur en moyenne vitesse.
- ✓ Si la température moteur est \geq 105°, le Calculateur Moteur commande le Groupe Moto Ventilateur en grande vitesse.

Légende:

Trait continu: seuils d'enclenchement des vitesses du GMV,

Trait pointillé : : seuils de désenclenchement des vitesses du GMV,


A: petite vitesse,

B: moyenne vitesse,

C: grande vitesse,

10.7.2 Pression climatisation

- ✓ Si AC ON = 1 ou pression circuit réfrigération ≥ 10 bars et pulseur.
- ✓ le Calculateur Moteur commande la petite vitesse du Groupe Moto Ventilateur
- ✓ PRESSION > 17 bars
- ✓ Le calculateur moteur et le BSI commandent la moyenne vitesse du GMV.
- ✓ PRESSION > 22 bars
- le Calculateur Moteur commande la grande vitesse du GMV.

Légende :

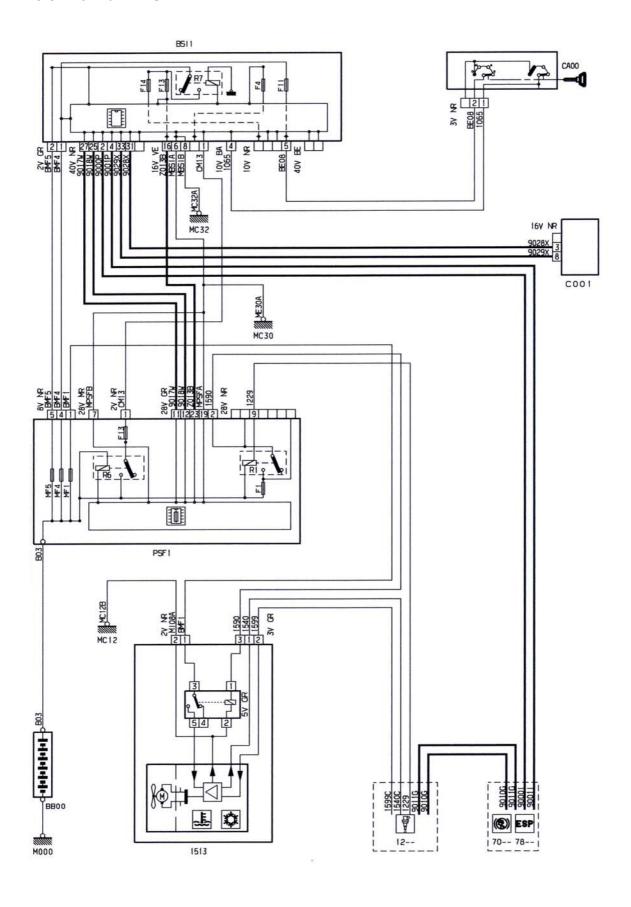
Trait continu: seuils d'enclenchement des vitesses du GMV.

Trait pointillé : : seuils de désenclenchement des vitesses du GMV.

A : petite vitesse,

B: moyenne vitesse,

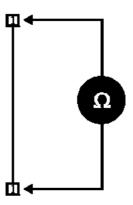
C: grande vitesse.


10.7.3 Température huile de BVA

Enclenchement de la grande vitesse pour T° d'huile > à 130 °C.

BASES ELECTRIQUES - 47 -

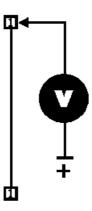
10.8PILOTAGE RCO



11 LES CONTROLES ELECTRIQUES

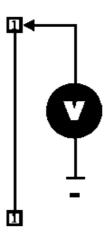
11.1CONTROLE DE CONTINUITE

$R \le 1 \Omega$


Le fil n'est pas coupé

11.2CONTROLE D'ISOLEMENT PAR RAPPORT A LA MASSE

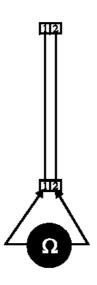
$$U = 0 V$$


Le fil n'est pas en court-circuit à la masse.

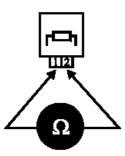
11.3CONTROLE D'ISOLEMENT PAR RAPPORT AU PLUS

U = 0 V

Le fil n'est pas en court-circuit au plus.



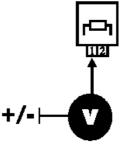
11.4CONTROLE D'ISOLEMENT DE DEUX FILS


R = infinie

Les fils sont bien isolés entre eux.

11.5CONTROLE D'UN ELEMENT RESISTIF

11.5.1 Contrôler la résistance de l'élément


R = Valeur définie par le constructeur

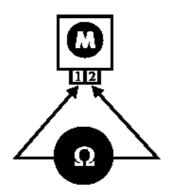
(Dans le cas d'une résistance variable ou d'un capteur, contrôler sa résistance dans ses différentes phases de fonctionnement).

11.5.2 Contrôler son isolement par rapport à la masse et au plus

$$U = 0 V$$

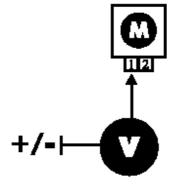
L'élément est bien isolé par rapport au plus et à la masse.

NOTA : pour les contrôles, débrancher tous les éléments périphériques.

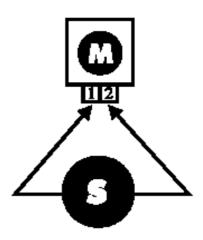

BASES ELECTRIQUES

11.6CONTROLE D'UN ACTIONNEUR

11.6.1 Contrôler sa résistance


R = Valeur définie par le constructeur

11.6.2 Contrôler son isolement par rapport à la masse et au plus


$$U = 0 V$$

L'actionneur est bien isolé par rapport au plus et la masse.

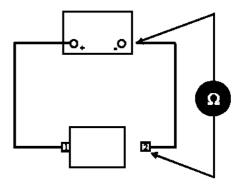
11.6.3 Effectuer sa simulation

A l'aide de l'outil de diagnostic, effectuer un test actionneur.

11.7LE CONTROLE D'ALIMENTATION

Le contrôle de l'alimentation d'un élément doit impérativement être effectué dans l'ordre suivant :

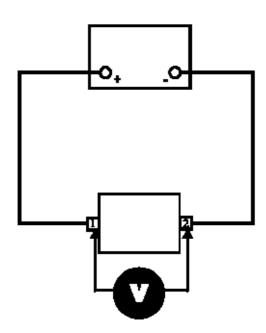
Contrôle de la masse puis contrôle du plus.


11.7.1 Contrôle de la masse

La masse se contrôle en résistance, élément débranché.

$R \le 1 \Omega$

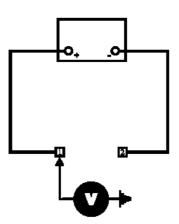
la masse n'est pas coupée.


Nota : cette dernière peut toutefois être résistive et provoquer une chute de tension aux bornes du récepteur.

11.7.2 Contrôle au plus

Le plus se contrôle en tension, élément branché.

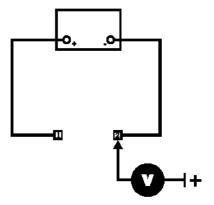
- ightharpoonup U= U bat ightharpoonup le contrôle est correct, c'est l'élément qui est défectueux.
- ∪ = 0 Volts → le plus est coupé
- $^{\circ}$ 0 < U < U Batterie \rightarrow on peut avoir 2 défauts possibles
 - 1) résistance de ligne sur la masse.
 - 2) résistance de ligne sur le plus.



11.8EXEMPLES DE MAUVAIS CONTROLES D'ALIMENTATION

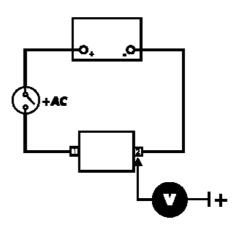
Cas 1 : Contrôle du plus, élément débranché.

Pourquoi est-ce un mauvais contrôle?


- ✓ Le plus est contrôlé sans équipement consommateur (exemple: ampoule).
- ✓ On ne peut détecter qu'un circuit ouvert sur le plus et non une résistance de ligne.

Cas 2 : Contrôle de la masse, élément débranché.

Pourquoi est-ce un mauvais contrôle?


- On contrôle seulement si la masse est coupée.
- ✓ On ne contrôle pas si elle est résistive.

Cas 3 : Contrôle de la masse, contact coupé.

Pourquoi est-ce un mauvais contrôle?

✓ On peut récupérer une masse à travers l'appareil branché.

12 LECTURE SCHEMA & DIAGNOSTIC

12.1PREAMBULE

Les exercices suivants portent sur le fonctionnement d'un lève-vitre électrique. Le système se compose de deux moteurs électriques actionnant les vitres avant uniquement. Ces moteurs sont commandés par trois interrupteurs, dont deux commandent la vitre coté droit, l'un pour le conducteur et l'autre pour le passager.

Les pages 58, 59 et 60 vous aideront dans la lecture des différents schémas électriques.

12.2IDENTIFICATION

12 2 1 Identification des éléments

A l'aide du **schéma 1** en page 55 :

✓ Complétez le tableau ci-contre en identifiant les éléments qui composent le circuit.

Elément	Numéro de l'élément	Elément	Numéro de l'élément
Batterie	35	Interrupteur lève-vitre passager (porte conducteur)	
Contacteur à clef	300		592
Relais d'alimentation lève-vitre	809		696
Interrupteur lève-vitre conducteur			697

12.2.2 Identification des circuits

Sur le **schéma 1** (page 55), le contacteur allumage/démarrage en position « Marche » :

- ✓ repassez en vert le circuit de commande des lève-vitres.
- ✓ repassez en rouge le circuit de puissance des lève-vitres.
- ✓ repassez en bleu les masses des moteurs.

Quel fusible	protège le	circuit de	commande :	
--------------	------------	------------	------------	--

Quel fusible protège le circuit de puissance :

BASES ELECTRIQUES - 54 -

12.3FONCTIONNEMENT

12.3.1 Commande vitre droite par interrupteur passager.

Sur le **schéma 2** (page 56), le passager actionne son interrupteur (592) afin de d'ouvrir sa vitre. Le contacteur allumage/démarrage en position « Marche » :

- ✓ repassez en rouge l'alimentation du moteur électrique.
- ✓ repassez en vert la masse du moteur électrique.

12.3.2 Commande vitre droite par interrupteur conducteur.

Sur le **schéma 3** (page 57), le conducteur actionne son interrupteur afin de fermer la vitre passager. Le contacteur allumage/démarrage en position « Marche » :

- ✓ complétez les interrupteurs 591 et 592 afin que la vitre monte.
- ✓ repassez en rouge l'alimentation du moteur électrique.
- ✓ repassez en vert la masse du moteur électrique.

12.4 CONTROLES

12.4.1 Mesures

Sur le schéma 3 (page 57), placez les voltmètres et ohmmètre suivants :

Voltmètres:

- ✓ U1 : élément 809, borne 1 du connecteur 5 voies vert et masse.
- ✓ U2 : élément 809, borne 2 du connecteur 5 voies vert et masse.
- √ U3 : élément 809, borne 3 du connecteur 5 voies vert et masse.
- ✓ U4 : élément 809, borne 5 du connecteur 5 voies vert et masse.
- √ U5 : élément 591, borne 3 du connecteur 5 voies blanc et masse.
- ✓ U6 : élément 592, borne 3 du connecteur 5 voies rouge et masse.
- √ U7 : élément 697, borne 1 et 3 du connecteur 3 voies orange.
- ✓ U8 : élément 592, borne 4 et 5 du connecteur 5 voies rouge.
- ✓ U9 : élément 592, borne 1 et 2 du connecteur 5 voies rouge.
- ✓ U10 : élément 591, borne 4 et 5 du connecteur 5 voies blanc.
- ✓ U11 : élément 591, borne 1 et 2 du connecteur 5 voies blanc.

Ohmmètre:

 $\checkmark \Omega 1$: élément 809, borne 1 et 2 du connecteur 5 voies vert.

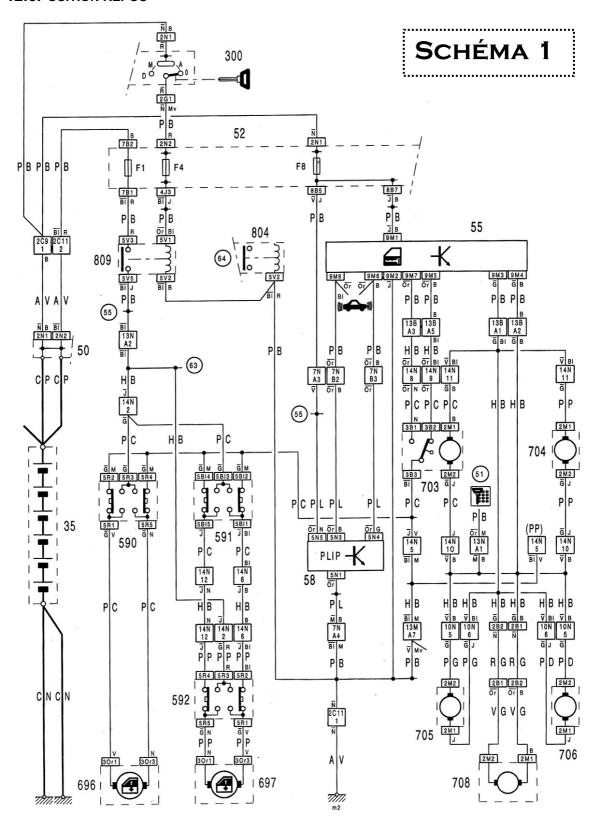
BASES ELECTRIQUES - 55 -

12.5DIAGNOSTIC

M. CAMUS Albert vous confie son véhicule, dont les lève-vitres électriques ne fonctionnent pas.

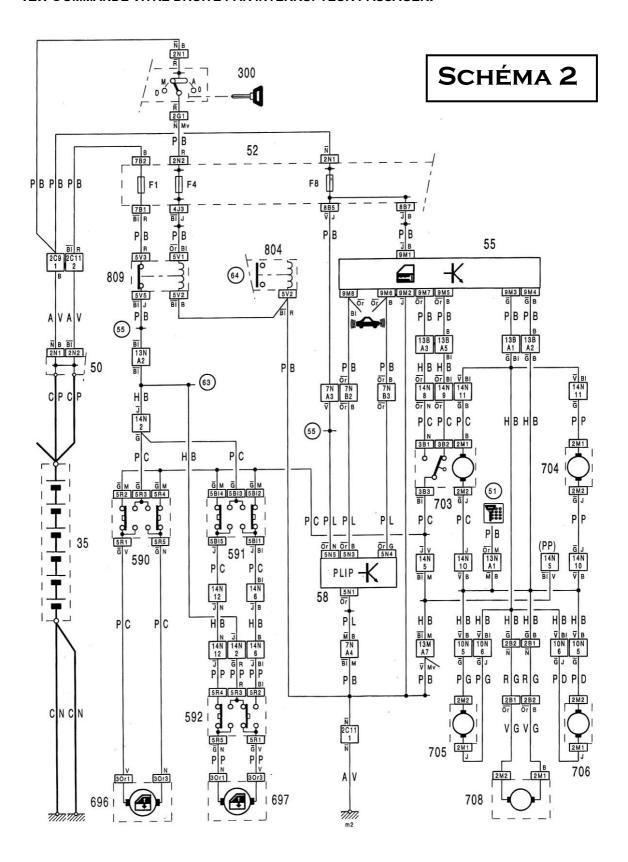
Hypothèse : Batterie en bon état et correctement chargée.

✓ En fonction des mesures du **schéma 3**, complétez le tableau ci-dessous.

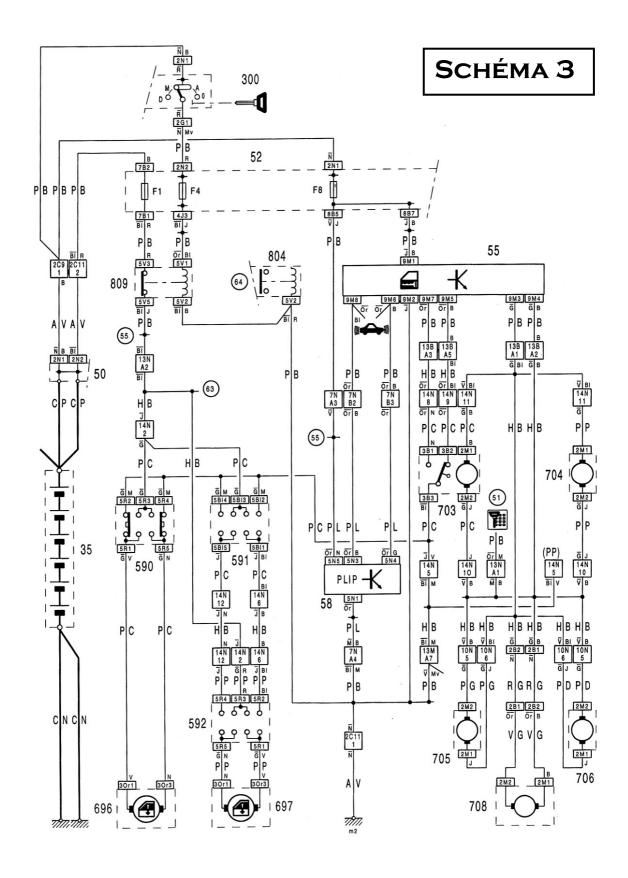

Identification de la mesure	Mesure	Condition de mesure	Valeur relevée	Valeur de référence	Conclusion (correct ou incorrect)
Alimentation circuit de commande du relais	U1	Le contacteur allumage - démarrage en position « Marche »	Ubat		
Masse circuit de commande du relais	U2	Le contacteur allumage - démarrage en position « Marche »	Ubat		
Alimentation circuit de puissance du relais	U3		Ubat		
Alimentation circuit lève-vitre.	U4	Le contacteur allumage - démarrage en position « Marche »	0 volt		
Alimentation interrupteur 591	U5	Le contacteur allumage - démarrage en position « Marche »	0 volt		
Alimentation interrupteur 592	U6	Le contacteur allumage - démarrage en position « Marche »	0 volt		
Alimentation moteur 697	U7	Le contacteur allumage - démarrage en position « Marche » interrupteur 592 en position descente	0 volt		
Chute de tension interrupteur 592	U8	Le contacteur allumage - démarrage en position « Marche » interrupteur 592 en position descente	0 volt		
Chute de tension interrupteur 592	U9	Le contacteur allumage - démarrage en position « Marche » interrupteur 592 en position montée	0 volt		
Chute de tension interrupteur 591	U10	Le contacteur allumage - démarrage en position « Marche » interrupteur 591 en position descente	0 volt		
Chute de tension interrupteur 591	U11	Le contacteur allumage - démarrage en position « Marche » interrupteur 591 en position montée	0 volt		
Résistance bobinage relais	Ω1	Elément isolé	68,4Ω		

	des informatior ent en justifiant v	ci-dessus,	identifiez	la cause	e du

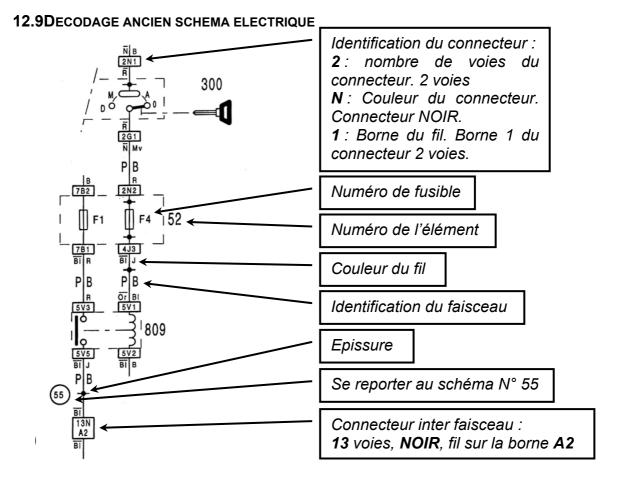
BASES ELECTRIQUES - 56 -


12.6Position REPOS

BASES ELECTRIQUES - 57 -


12.7COMMANDE VITRE DROITE PAR INTERRUPTEUR PASSAGER.

BASES ELECTRIQUES - 58 -



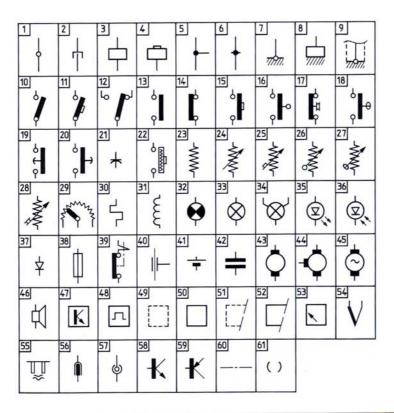
12.8COMMANDE VITRE DROITE PAR INTERRUPTEUR CONDUCTEUR.

BASES ELECTRIQUES - 59 -

12.10 DENTIFICATION DES FAISCEAUX

REF.	DESIGNATION DES FAISCEAUX	REF.	DESIGNATION DES FAISCEAUX
АВ	ANTIBLOQUEUR	PG	PORTE ARRIERE GAUCHE
AV	AVANT	PJ	CORRECTEUR DE PROJECTEURS
CL	CLIMATISATION	PL	PLAFONNIER
CN	CABLE NEGATIF	PP	PORTE PASSAGER
СР	CABLE POSITIF	RD	ARRIERE DROIT
EF	ECLAIRAGE COFFRE	RG	ARRIERE GAUCHE
FR	FEUX ARRIERE	RL	RAPPEL LATERAL DE CLIGNOTANT
нв	HABITACLE	TJ	INTERRUPTEUR DE CORRECTION DE PROJECTEURS
мт	MOTEUR (ET INJECTION)	UD	USURE DE FREIN DROIT
MV	MOTO-VENTILATEUR	UG	USURE DE FREIN GAUCHE
РВ	PLANCHE DE BORD	VD	VOLET DROIT
PC	PORTE CONDUCTEUR	VG	VOLET GAUCHE
PD	PORTE ARRIERE DROITE		

Bases electriques - 60 -


12.11DESIGNATION DES ELEMENTS

Rep.	Désignation	Rep.	Désignation
35	Batterie	809	Relais lève-vitre avant et toit ouvrant
40	Bloc compteurs	825	Relais feux de croisement
50	Boîtier d'alimentation	827	Relais feux diurnes (croisement)
52	Boîtier interconnexions	841	Relais de réalimentation lève-vitre et
55	Boîtier de verrouillage de portes		toit ouvrant
58	Boîtier récepteur de verrouillage	888	Sirène
62	Boîtier de masse	991	Voyant alarme-antivol
67	Boîtier alarme-antivol		
163	Capteur volumétrique gauche		
164	Capteur volumétrique droit		
176	Clavier antidémarrage codé		
211	Commutateur gauche (éclairage / clignotants /		
211	avertisseur)		
300	Contacteur antivol		
302	Contact éclaireur coffre		
303	Contact fermeture capot		
305	Contact fermeture porte conducteur (témoin)		
306	Contact fermeture porte passager (témoin)		
307	Contact fermeture porte AR gauche (témoin)		
308	Contact fermeture porte AR droite (témoin)		
310	Contact femiliture porte avant gauche		
311	Contact feuillure porte avant droite		=
323	Contact toit ouvrant (point zéro)		
324	Contact toit ouvrant fin de course coulissement		
325	Contact toit ouvrant fin de course		
323	entrebaillement		
364	Diode circuit porte antidémarrage codé		
480	Feu arrière gauche		
481	Feu arrière droit		
488	Feu de direction avant gauche		
489	Feu de direction avant gadene		
590	Interrupteur lève-vitre conducteur	,	
591	Interrupteur lève-vitre passager (sur porte		
331	conducteur)		
592	Interrupteur lève-vitre passager (sur porte		
332	passager)		
607	Interrupteur toit-ouvrant		
615	Interrupteur alarme (protection volumétrique)		
696	Moteur de lève-vitre avant gauche		
697	Moteur de lève-vitre avant droit		
702	Moteur de toit ouvrant		
703	Moteur de verrouillage porte conducteur		
704	Moteur de verrouillage porte passager		
705	Moteur de verrouillage porte passager		
706	Moteur de verrouillage porte arrière droite		
708	Moteur de verrouillage porte arrière Moteur de verrouillage volet arrière		
755	Pompe à essence		
776	Prise diagnostic alarme-antivol		
795	Relais alarme-antivol		
804	Relais climatisation		

BASES ELECTRIQUES - 61 -

12.12SYMBOLES ELECTRIQUES

N°	Désignation	N°	Désignation
1	Jonction par cosse	32	Lampe témoin (voyant)
2	Jonction par fiche	33	Lampe d'éclairage
3	Jonction par connecteur	34	Lampe d'éclairage à 2 filaments
4	Jonction par connecteur (avec index pour différenciation)	35	Diode électroluminescente (LED)
5	Jonction non démontable (épissure)	36	Photodiode
6	Jonction non démontable avec report	37	Diode
7	Masse par cosse	38	Fusible
8	Masse par connecteur	39	Disjoncteur thermique
9	Masse par le corps de la pièce	40	Blindage
10	Interrupteur (retour non automatique)	41	Elément d'accumulateur
11	Interrupteur manuel	42	Condensateur
12	Inverseur	43	Moteur
13	Contact ouvert au repos (retour automatique)	44	Moteur à 2 vitesses
14	Contact fermé au repos (retour automatique)	45	Générateur de courant alternatif
15	Contact manuel	46	Appareil acoustique (avertisseur, HP)
16	Contact mécanique	47	Boîtier électronique
17	Contact de pression (manocontact)	48	Boîtier intermittence
18	Contact de température (thermocontact)	49	Entourage d'une pièce (avec son schéma de principe)
19	Contact retardé à l'ouverture	50	Entourage d'une pièce (sans son schéma de principe)
20	Contact retardé à la fermeture	51	Extrait d'une pièce
21	Contact par frottement	52	Extrait d'une pièce
22	Contact manuel résistant (allume-cigare)	53	Indicateur
23	Résistance	54	Thermocouple
24	Résistance variable	55	Electrodes
25	Résistance variable manuellement	56	Sonde à oxygène
26	Résistance variable mécaniquement	57	Prise de courant
27	Résistance variable par la température (thermistance)	58	Transistor NPN
28	Résistance variable par la pression	59	Transistor PNP
29	Résistance variable	60	Axe de liaison
30	Shunt	61	Inexistence de l'extrémité
31	Bobine (relais, électrovanne)		

BASES ELECTRIQUES - 62 -